Diagnosing Salinity Problems

1

101

-

Reagan Waskom Colorado State University

Causal Factors

Geology: weathering of primary minerals, marine sediments, etc

Climate: evaporation exceeds precipitation

Irrigation: water with moderate to high TDS

Water table: near soil surface

Drainage: poor

Other?

Terminology

- Soluble salts major dissolved inorganic solutes
- Salinity hazard total soluble salt content
- **Sodium hazard** relative proportion of exchangeable sodium (Na⁺) to calcium (Ca⁺⁺) and magnesium (Mg⁺⁺) ions
- Alkalinity soil pH >7.0; "basic" soil, problems usually start at pH >7.8 as nutrient deficiencies
- **Ion specific effects** effect of chloride (Cl⁻), sodium (Na⁺), or boron (B) on plants not due to osmotic stress

Generalized Classification of Salt-Affected Soils

Classification	Electrical Conductivity (dS/m)	Sodium Adsorption Ratio (SAR)	Soil pH
Saline	>4.0	<13	<8.5
Sodic	<4.0	<u>></u> 13	>8.5
Saline-Sodic	>4.0	<u>>13</u>	<8.5
High pH	<4.0	<13	>7.8

Lab parameters for diagnosing salinity/sodicity problems

• pH

- Electrical Conductivity (EC)
- Sodium Adsorption Ratio (SAR)
- Exchangeable Sodium Percentage (ESP)
- CEC
- Lime Estimate
- TDS (water only)
- Anions and cations: eg. Ca, Mg, Na, Cl, SO₄, CO₃, HCO₃
- Available gypsum and gypsum requirement
- Soil texture estimate
- Other?

Field Diagnosis

Problem	Potential symptoms
saline soil	• white crust on soil surface
•	water stressed plants
•	· leaf tip burn
saline irrigation	· leaf burn
water	\cdot poor growth
•	• moisture stress
sodic soil	• crusting or hardsetting
	• low infiltration rate; runoff and erosion
•	• dark powdery residue on soil surface
	• stunted plants with leaf margins burned
saline-sodic soil	• generally, same symptoms as saline soil
high pH	nutrient deficiencies manifesting as
	• stunted yellow plants
	· dark green to purplish plants

Field Diagnosis – Saline Soils

- Plant may appear water stressed
- Poor germination
- Leaf burn
- White alkali on surface
- Shallow water table

Field Diagnosis – Sodic Soils

- loss of soil structure
- crusting or hardsetting
- low infiltration rate; runoff and erosion
- dark powdery residue on soil surface
- stunted plants
- nutrient deficiencies

Soil Sampling

Irrigation Water Sampling

What lab tests do you need to run ...

- If you are unsure, but suspect a salinity or sodicity problem?
- If you suspect poor quality irrigation water?
- If you know that a salinity problem exists and you want to monitor or calculate leaching requirement?
- If you know that a sodicity problem exists and you want to calculate gypsum requirement?

Evaluate 3 Field Situations

- Given routine soil test analysis and irrigation water analysis ...
 - How would you classify each situation as to salinity hazard?
 - What information did you use to diagnose the situation?
 - What additional field or lab information do you need to plan a management or reclamation strategy?

Summary

- Properly characterize the situation
- Provide grower with good documentation and maps
- Help grower identify and understand problem before it gets out of hand
- Don't make the problem worse get help